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LETTER TO THE EDITOR 

The analogue of the Backlund transformation for 
integrable many-body systems 

Stefan Wojciechowski 
Institute of Theoretical Physics of the University of Warsaw, 00-681 Warsaw, ul.Hoza 
69, Poland 

Received 3 September 1982 

Abstract. Canonical transformations analogous to the Backlund transformation are dis- 
cussed. Explicit formulae are given for many-body systems of particles interacting in one 
dimension. 

There are three characteristic properties common to all soliton equations: their Lax 
representation and solvability by the inverse scattering transform, their complete 
integrability and the existence of the Backlund transformation. Similar properties 
hold true for the finite-dimensional counterparts of the soliton equations, i.e. systems 
of many particles ( N )  interacting in a line by the following two-body potentials: 

V ( x )  =ex,  for nearest-neighbour interactions, (1) 

(2) 
V ( x ) = l / x Z + w  x 

Hamiltonian equations describing the motion of those systems also admit Lax 
representations and have N independent commuting first integrals, thus ensuring 
complete integrability (Flaschka 1974, Moser 1975, Calogero 1975). However, the 
analogue of the Backlund transformation has been to some extent unknown. Here 
we give adequate formulae for all the potentials written above. 

First let us explain what is understood by a Backlund transformation for a 
mechanical system. In the case of soliton equations it is a system of two lower order 
(than that of the original equation) partial differential equations having the following 
characteristic features: 

V ( x )  = p ( x )  (special cases 1/x2, coth2 x ,  cot2 x )  or 

for interaction with each other. 2 2  

(i) the conditions of compatibility reduce to the dynamical equation, 
(ii) they generalise contact transformation, 
(iii) they provide (via the permutability theorem) the algebraic construction of new 

solutions. 

The important limitation of the Backlund transformation is that only a narrow class 
of new solutions can be constructed using it. 

For a mechanical system there is a unique possibility of satisfying the aforemen- 
tioned conditions if the transformation between the old and new variables y, x takes 
the form x =f(x, y ) ,  i = g ( x ,  y )  and expressions for x, y reduce to the equations of 
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motion, The first example is the Kac-Van Moerbecke (1975) system of equations: 

ik=exp(Xk-Xk+l)fexp (Xk-l-xk) k = 1 , .  . . , N xO=-o;), x N + 1 =  +o;) 

(3) 

which can be differentiated to give the system of two disjointed Toda sublattices 

i k  =exp (Xk-Z-xk)-exp (xk-xk+Z) (4) 

corresponding to even and odd values of k .  For N even, equations (3) connect two 
solutions of the (iN)-particle system and for N odd they set a reduction of the solution 
for :(N + 1) particles to :(N - 1) particles. The next example of the Backlund transfor- 
mation has been found recently by J Gibbons (private communication) for the Calogero 
(1975) system of N particles interacting with each other by the potential 1 /x2 .  That 
result has been a byproduct of his research on the rational solutions of the Schrodinger 
equation it,bt = -t,bLZ + U(z)t,b with the potential V ( z )  = X ~ = I  2/(2 - yk)'.  His formulae 
correspond to a particular case of the general result presented below. 

The analogue of the Backlund transformation for the one-dimensional system of 
N particles interacting with each other by one of the particular potentials (2) is defined 
by the expressions 

h.1 N 

j = l  j = l  
- i&ik=-21 '4(Xk-Xj)+2 1 4(Xk-yj)-2ihE +wxk ( 5 )  

M N 

j = l  j = 1  
(6) 

. .  
I E Y ~ = ~  1 4 ( ~ m - x , ) - 2 C '  4 ( ~ m - ~ j ) + 2 i h ~ - w y m  

with the following specification of 4 functions: 

(a) V(x) = p(x): 4 ( x )  = I (x) ,  M = N, = 0; 
(b) V(x) = 1 / x 2  (coth'x, cot'x): 4 ( x )  = l / x  (coth x ,  cot x ) ,  M, N arbitrary, w = 0 ;  
(c) v'(x) = 1/x2+w2x2:  4 ( x )  = l /x ,  M,  N arbitrary, w # 0; 

where p(x),  l ( x )  are the Weierstrass functions, k = 1,. . . ,M, m = 1 , .  . . , N, and the 
values of E = 1, E = - i  correspond to the case of repulsive and attractive force 
respectively. The prime on the X symbol means that the singular term is omitted in 
the summation. 

This system of equations has all characteristic features of the Backlund transfor- 
mation: 

(i) Time differentiation of equations ( 5 )  and (6 )  and substitution of 1, >; reduce 

(a) M = N, w = 0 and the function 4 ( x )  satifies the functional equation 

them to the potential motion equations if 

4 ( X W (  Y )  - 4 ~ 4  ( Y )  = 4 (X + Y MY Y )  - ~ W I  + r(x) - r( y )  

4 (-x) = 4 ( X I  

4 ( X I  = I (x )  + YX and ux) = & + ~ ~ ) + 4 ( ~ ) 4 ' ( ~ ) .  

(7) r(-x) = - r (x )  

with the most general solution (Choodnovsky and Choodnovsky 1977) given by 

Without any loss of generality of equations ( 5 )  and (6) the value y = 0 can be taken 
here. Direct, but tedious, computation confirms that the equations of motion (for 
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E = 1)  are 

(b) M, N arbitrary, w = 0 and the function & ( x )  satisfies the following variant of 
the functional equation (7): 

with the most general solution (Choodnovsky and Choodnovsky 1977): l / x ,  coth x ,  
cot x.  The case 4 ( x )  = l / x  has been found by J Gibbons (private communication). 

(c) M, N arbitrary, o # 0 and the function 4 ( x )  = l / x .  Then by direct computation 
one verifies that 

(ii) The transformation of ( 5 )  and (6 )  is canonical because i k  =aF/axk, y k  = 
- aF/ayk with generating function 

where ( ~ ( x )  is also a Weierstrass function. Note that it is a very particular time- 
independent canonical transformation which conserves not only the Hamiltonian 
character of the equations of motion but also the algebraical form of the Hamiltonian. 
Also for N even the Kac-Van Moerbecke equations (3) define a canonical transforma- 
tion with the generating function 

(iii) The transformation defined by equations ( 5 )  and (6) is a system of N + M  
algebraic equations for 2M quantities xi, xi once the solution y j ,  y i  of the equations 
of motion is given. Thus the question naturally arises of the existence and uniqueness 
of the solution to the underdetermined (for M < N )  system of equations. The answer 
comes out of the analysis of the Schrodinger equation 

In the simplest case of the potential U ( z )  = 
solution 

2 / ( 2  - yj)’ one looks for the rational 

which, for M = N ,  can also be decomposed into the sum of simple fractions 
N 

exp[is(Az-h2t)]. 
i = l  
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The substitution of 4 into (10) and computation of residues provides the two following 
systems of equations 

and 

N N 

j = l  j =1  
icy, = 2 1 l / ( y ,  -x i ) -2  E’ 1/(  y, - yi) +2Ak 

which are equivalent to either equation (10) with ansarz (11) or equation (12). Thus, 
for M = N, the Backlund transformation defined by (13) and (14) is, in fact, equivalent 
to the Lax form of the Calogero (1975) system. It can be seen more clearly if equations 
(15) and (16) are put into matrix notation: 

Lb = 2 A ~ b  - 2iv (17) 

Eb=Ab (18) 

where 

U is a column vector with unit components and 6 is also a column vector with 
components b,, m = 1, , . . , N. If yi, ji is a solution of the equations of motion, then 
equation (17) is a system of linear equations for b,, which has a unique solution, 
provided 2A is not an eigenvalue of L. The positions xk can now be determined as 
the roots of the Nth order polynomial with coefficients dependent on yi and b,. If 
all roots are distinct the solution is unique. Note that the assumption of yi, g j  satisfying 
the equations of motion is compatible with equations (17) and (18). Indeed, the time 
differentiation of (17) and substitution of (1 8) gives the Lax form 

i =[A, L]b 

of the equations of motion on yi, y j .  
The transformation (13), (14) determined a one-parameter family xj(t, A ) ,  i j ( t ,  A )  

of Backlund transforms. Unfortunately for the repulsive (E  = 1) case it takes complex 
values. Only in the attractive (E = -i)  case, if at some time xi, xi are real, do they 
remain real later. However, here there are difficulties with the singularities of the kinetic 
energy in finite time, and hence the transformation is well defined within the time 
intervals between collapses of particles. 

For M = N - 1 the system of equations (13), (14) defines the reduction of the 
solution for N particles to the solution for N-1 particles. Here again yj, g j  are 
specified arbitrarily and there are 2 N  - 2  variables xi, xi to determine from 2 N  - 1 
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equations. Therefore the value of A also has to be determined from the equations. 
In fact, by virtue of the decomposition 

the system of (13) and (14) is equivalent to the matrix equations 

Lb = 2 A ~ b  66 = A b .  

The non-trivial solution for b exists only for a particular A-the eigenvalues of the 
matrix L. Positions of the particles xi are the roots of the polynomial determined 
from (19). Thus for every eigenvalue 2 A k ,  k = 1, . . . , N, there exists a unique solution 
of equations (13) and (14). 

The case M = 0 for E = -i  is known (Choodnovsky and Choodnovsky 1977) as 
having a Lax representation and embeddable into the Hamiltonian system with the 
potential -1/x2. It describes a very special evolution with velocities algebraically 
dependent on the positions of the particles. It is remarkable that such a condition 
propagates in time. Whether the general system of ( 5 )  and (6)  also has a Lax 
representation is unknown as yet. 

The argument presented above works also for other cases listed in equations ( 5 )  
and (6 ) .  It is necessary to consider the Schrodinger equation (10) with the potential 
U ( z )  = Z:=, l/sin2 (z - y j )  or U ( z )  = p ( z  - y j ) .  Here the use of the analogous 
ansatz 

and of the decomposition 

also makes the Backlund transformation equations ( 5 )  and (6 )  equivalent to the Lax 
representation of the equations of motion. 

1 wish to thank Dr J Gibbons for access to his results before publication and for very 
valuable discussions. I am also very grateful to Professor F Calogero for warm 
hospitality at the University of Rome where part of this work was done. 
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